

CALCULATING THE COMPASS HEADING

OBJECTIVE

Demonstrate an understanding of the magnetic corrections to the true course necessary to determine a flyable compass heading.

$$TC +/- MV = MC$$

 $MC +/- DEV = CH$

Sample Compass Deviation Card:

For (Magnetic)	N	30	60	E	120	150
Steer (Compass)	0	28	57	86	117	148
For (Magnetic	S	210	240	W	300	330
Steer (Compass)	180	212	243	274	303	332

Editorial credit: Pilot's Handbook of Aeronautical Knowledge

QUESTIONS

Use the equations above and the compass deviation card for all the questions below. These scenarios assume no wind.

Determine the compass heading in each of the following examples:

- 1. True course determined from Sectional: 270 degrees
 - a. Magnetic variation: 5 degrees East
 - b. Compass deviation: +4 degrees
 - c. Compass heading: 269 degrees

- 2. Reference the excerpt to the right. Course plotted on sectional: **175 degrees**
 - a. Magnetic variation: -21 degrees
 - b. Compass deviation: -2 degrees
 - c. Compass heading: 152 degrees

Editorial credit: SkyVector

3. Reference the excerpt above.

Course plotted on sectional: 160 degrees

- a. Magnetic variation: O degrees
- b. Compass deviation: Either -1 or -2 degrees
- c. Compass heading: 158 or 159 degrees